timhortons咖啡粉怎么冲
是由Timmies咖啡推出的中秋节礼品卡,礼品卡激活后可以在timmies全国400多家门店进行消费,还可以在中秋活动期间换购鲜肉月饼(限上海地区)和周边产品。
关于礼品卡:1. 三种面额礼品卡可选择:100元/200元/500元
2. 至少享受95折优惠。3. 与其他优惠同享
4. 全国通用,激活后3年内有效
tims咖啡做法
tims的鲜萃咖啡就是美式,拿铁是一半咖啡一半牛奶。
tims咖啡double double怎么点
数据库本身没有double类型
Sql Server 提供的系统数据类型 共25种 ,每种类型有固定的取值范围,超过了就会报错。在数据库下面依次点开可编程性--类型--系统数据类型,就能看到明细的分类。
实际上日常使用中,不用记住这么多,我们记住常用的几种类型就行了:
(1)整数数值型:bigint >int >smallint >tinyint
大于号表示取值范围的对比;
(2)浮点数值型:主要有float, numeric(10,2), decimal(10,2)这样的,
其中括号里面10 代表总长度,2代表两位小数,这两个可以自行定义;
(3)字符串型: 如varchar(256) ,nvarchar(256),这里256就代表长度是256个字节,可以存128个中文字符。注意中文字符不单单指汉字,也包括在中文状态下输入的各种符号;
(4)日期时间型:如date 指日期, time 指时间 ,datetime 指日期和时间;
(5)其他类型:text 文本型,money 货币型 ,实际上可以看做是字符型和数值型更深化的应用形式。
tims咖啡的doubledouble
eigen共有14个基本函数,上千个无限函数。
#include <iostream>
using namespace std;
#include <ctime>
// Eigen 部分
#include <Eigen/Core>
// 稠密矩阵的代数运算(逆,特征值等)
#include <Eigen/Dense>
#define MATRIX_SIZE 50
/****************************
* 本程序演示了 Eigen 基本类型的使用
****************************/
int main( int argc, char** argv )
{
// Eigen 中所有向量和矩阵都是Eigen::Matrix,它是一个模板类。它的前三个参数为:数据类型,行,列
// 声明一个2*3的float矩阵
Eigen::Matrix<float, 2, 3> matrix_23;
// 同时,Eigen 通过 typedef 提供了许多内置类型,不过底层仍是Eigen::Matrix
// 例如 Vector3d 实质上是 Eigen::Matrix<double, 3, 1>,即三维向量
Eigen::Vector3d v_3d;
// 这是一样的
Eigen::Matrix<float,3,1> vd_3d;
// Matrix3d 实质上是 Eigen::Matrix<double, 3, 3>
Eigen::Matrix3d matrix_33 = Eigen::Matrix3d::Zero(); //初始化为零
// 如果不确定矩阵大小,可以使用动态大小的矩阵
Eigen::Matrix< double, Eigen::Dynamic, Eigen::Dynamic > matrix_dynamic;
// 更简单的
Eigen::MatrixXd matrix_x;//大小在运行时被赋值后才知道 矩阵
// 这种类型还有很多,我们不一一列举
// 下面是对Eigen阵的操作
// 输入数据(初始化)
matrix_23 << 1, 2, 3, 4, 5, 6;
// 输出
cout << matrix_23 << endl;
// 用()访问矩阵中的元素
for (int i=0; i<2; i++) {
for (int j=0; j<3; j++)
cout<<matrix_23(i,j)<<"\t";
cout<<endl;
}
// 矩阵和向量相乘(实际上仍是矩阵和矩阵)
v_3d << 3, 2, 1;
vd_3d << 4,5,6;
// 但是在Eigen里你不能混合两种不同类型的矩阵,像这样是错的
// Eigen::Matrix<double, 2, 1> result_wrong_type = matrix_23 * v_3d;
// 应该显式转换
//cast 强制类型转换
Eigen::Matrix<double, 2, 1> result = matrix_23.cast<double>() * v_3d;
cout << result << endl;
Eigen::Matrix<float, 2, 1> result2 = matrix_23 * vd_3d;
cout << result2 << endl;
// 同样你不能搞错矩阵的维度
// 试着取消下面的注释,看看Eigen会报什么错
// Eigen::Matrix<double, 2, 3> result_wrong_dimension = matrix_23.cast<double>() * v_3d;
// 一些矩阵运算
// 四则运算就不演示了,直接用+-*/即可。
matrix_33 = Eigen::Matrix3d::Random(); // 随机数矩阵
cout << matrix_33 << endl << endl;
cout << matrix_33.transpose() << endl; // 转置
cout << matrix_33.sum() << endl; // 各元素和
cout << matrix_33.trace() << endl; // 迹
cout << 10*matrix_33 << endl; // 数乘
cout << matrix_33.inverse() << endl; // 逆
cout << matrix_33.determinant() << endl; // 行列式
// 特征值
// 实对称矩阵可以保证对角化成功
Eigen::SelfAdjointEigenSolver<Eigen::Matrix3d> eigen_solver ( matrix_33.transpose()*matrix_33 );
cout << "Eigen values = \n" << eigen_solver.eigenvalues() << endl; //特征值
cout << "Eigen vectors = \n" << eigen_solver.eigenvectors() << endl;//特征向量
// 解方程
// 我们求解 matrix_NN * x = v_Nd 这个方程
// N的大小在前边的宏里定义,它由随机数生成
// 直接求逆自然是最直接的,但是求逆运算量大
Eigen::Matrix< double, MATRIX_SIZE, MATRIX_SIZE > matrix_NN;
matrix_NN = Eigen::MatrixXd::Random( MATRIX_SIZE, MATRIX_SIZE );
Eigen::Matrix< double, MATRIX_SIZE, 1> v_Nd;
v_Nd = Eigen::MatrixXd::Random( MATRIX_SIZE,1 );
clock_t time_stt = clock(); // 计时
// 直接求逆
Eigen::Matrix<double,MATRIX_SIZE,1> x = matrix_NN.inverse()*v_Nd;
cout <<"time use in normal inverse is " << 1000* (clock() - time_stt)/(double)CLOCKS_PER_SEC << "ms"<< endl;
// 通常用矩阵分解来求,例如QR分解,速度会快很多
time_stt = clock();
x = matrix_NN.colPivHouseholderQr().solve(v_Nd);
cout <<"time use in Qr decomposition is " <<1000* (clock() - time_stt)/(double)CLOCKS_PER_SEC <<"ms" << endl;
return 0;
}
tims咖啡怎样
鲜萃咖啡是用滴滤式咖啡机做的。大致的原理是找一个大漏斗,在漏斗上垫一个锥形的过滤纸,在过滤纸里放上小山包一样的咖啡粉(是咖啡豆磨成的粉,不是即溶咖啡粉!),再用热水从上面慢慢浇进这个漏斗里。一次冲入的热水重量大约是咖啡粉重量的15倍。
这种咖啡比较准确的名字应该叫做滴滤咖啡,味道较淡,和手冲咖啡、挂耳咖啡其实是同一个原理。滴滤式咖啡机能一次性做很大一壶咖啡,机器结构简单,机器价格也低,因此单杯咖啡总体成本也低。
本站内容由网友提供,版权归原作者本人所有,本网站不对网站真实性负责,如有违反您的利益,请与我们联系。